The Discretely-Discontinuous Galerkin Coarse Grid for Domain Decomposition

نویسندگان

  • Essex Edwards
  • Robert Bridson
چکیده

We present an algebraic method for constructing a highly effective coarse grid correction to accelerate domain decomposition. The coarse problem is constructed from the original matrix and a small set of input vectors that span a low-degree polynomial space, but no further knowledge of meshes or continuous functionals is used. We construct a coarse basis by partitioning the problem into subdomains and using the restriction of each input vector to each subdomain as its own basis function. This basis resembles a Discontinuous Galerkin basis on subdomain-sized elements. Constructing the coarse problem by Galerkin projection, we prove a highorder convergent error bound for the coarse solutions. Used in a twolevel symmetric multiplicative overlapping Schwarz preconditioner, the resulting conjugate gradient solver shows optimal scaling. Convergence requires a constant number of iterations, independent of fine problem size, on a range of scalar and vector-valued second-order and fourth-order PDEs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A NOTE ON OPTIMAL SPECTRAL BOUNDS FOR NONOVERLAPPING DOMAIN DECOMPOSITION PRECONDITIONERS FOR hp–VERSION DISCONTINUOUS GALERKIN METHODS

In this article, we consider the derivation of hp–optimal spectral bounds for a class of domain decomposition preconditioners based on the Schwarz framework for discontinuous Galerkin finite element approximations of second–order elliptic partial differential equations. In particular, we improve the bounds derived in our earlier article [P.F. Antonietti and P. Houston, J. Sci. Comput., 46(1):12...

متن کامل

A Discontinuous Galerkin like Coarse Space correction for Domain Decomposition Methods with continuous local spaces : the DCS-DGLC Algorithm

In this paper, we are interested in scalable Domain Decomposition Methods (DDM). To this end, we introduce and study a new Coarse Space Correction algorithm for Optimized Schwarz Methods(OSM): the DCS-DGLC algorithm. The main idea is to use a Discontinuous Galerkin like formulation to compute a discontinuous coarse space correction. While the local spaces remain continuous, the coarse space sho...

متن کامل

On Non-overlapping Domain Decomposition Preconditioners for Discontinuous Galerkin Finite Element Methods in H-type Norms

Abstract. We analyse the spectral bounds of non-overlapping domain decomposition additive Schwarz preconditioners for hp-version discontinuous Galerkin finite element methods in H-type norms. Using original approximation results for discontinuous finite element spaces, it is found that these preconditioners yield a condition number bound of order 1 + Hp/hq, where H and h are respectively the co...

متن کامل

Coupling Discontinuous Galerkin and Mixed Finite Element Discretizations using Mortar Finite Elements

Abstract. Discontinuous Galerkin (DG) and mixed finite element (MFE) methods are two popular methods that possess local mass conservation. In this paper we investigate DG-DG and DG-MFE domain decomposition couplings using mortar finite elements to impose weak continuity of fluxes and pressures on the interface. The subdomain grids need not match and the mortar grid may be much coarser, giving a...

متن کامل

Parallelization of a Compositional Simulator with a Galerkin Coarse/Fine Method

We describe a simulator-parallel method for parallelization of a large industrial code. Our approach is based on domain-decomposition, with a coarse grid operator, generated by a Galerkin technique. The technique gives an easy and exible method to include local grid reenement in already existing simulators, it also gives a high level of parallelization. The code is run on a Origin 2000 computer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1504.00907  شماره 

صفحات  -

تاریخ انتشار 2015